INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Table of Contents

F Yol Lo 1 VA L=To F=d s 0 1T o S UUU RSP 2
BT 10 1 LaTe] T =4SP 2
SCENES OVEIVIBW ..eeiiiiiiiiiiiiiiie ettt e e e e s s bbb e e et e s s s b b ettt e e e s s bbb e e e e e e s s sanbaaeeeesssnbbaeeseeesananns 2
INEFO SCEME ...ttt 2
CrAItS SCOME...ciiiiiiiie ittt ettt st sttt st s b e e e ra e sbe e sree e 2
O gL o] o TP 2
THE GAMIE SCENE. ...ttt ettt ettt e sttt e e s bt e s aat et e e sab et e e s me e e e s san et e e samr e e e e smreeeesaneneesanreeeesneeeenans 3
The Current State Of the GamE SCENE .........viii i e e s e e e e e 3
The State MaChing PrEVIEW ....cccuiiii ittt ettt e st e e sttt e e sbt e e s aateeeesambeeeesabeeeesbeeeenans 3
BehaVior FUNCHIONS. .....ocviiiiiiiiii ettt ra e e san e sane s 4
LT ISP 4
LT oTo = =T SRR 4
GEEENVIFONMENT() 1eriiiiiiiiiie ettt e e e et e e e e e e et b e e e e e e e eseabbbaeeeeeeaasbsbasaeaaeesassbaaaeaaeesastaaaeeaeesannssrenes 5
S0 WAL ettt e s bt e e e e e e e b et e e e e b et e e s bee e e e n b et e e e be e e e e anbeeeeabeeeeenees 5
The SEAate IMACKINE ....eiiiiiiiiietc ettt re e e e e e saa e e sar e e sab e e sree e 6
LCF: 10 o L= U OSSP PP RSP PTOTPROT 6
BasiC STate FUNCLIONS ..ot e e 6
Y] 1= | I T PSP UPPPTOPP 7
(07 g T= Y= ] =1 (=] RS 7
THE GaAMEPIAY STATE ..uuuuiiiiiiiiiiiiiiiiiittit e e e e e e e e e eeeeeeeeeaeeaeaeaeaaaeaeaeaeeeaeaeeeeesasasasasasasassasassnnsnsnssssssssnsnrnnnrnnes 8
(CE T[] o] AT = LT [ USRS 8
FUNCHIONS o e e a e e e s a e e e e e e s s sbaaeeeeeeas 9
NS CE g = o] E 1A 14 =T | F ST UPPP RPN 9
Calling SETGAMEPIAYSLALE() c.uvvrrrereeriiiiiitie ettt s et e e e s sttt e e e e s st ate e e e e s saababeeeeeesssnasbesaeeeessnnsnreees 9
GameplayState STATENAIME.IUG.......ccooieee ittt eeee e e e eeerereeeeeeeeeeeaeaaaaaaaeaeaeeaeeaeeeeeeseeseensesns 10
GamepPlayState _TEMPLATE.IU......uiiiiieiiiiiieieeeeeeeee e e e e e e e e e e e e e e e e e e e e e e e e e e e e e se s e s s s s s s s ss s s nnsnnnnnnnnnnennrennnes 10
I PP PP PPRPPRPOt 11

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Acknowledgments

Big shout out to Ryan Heath for researching and implementing all of the awesome tech that makes all of this
Lua integration into our engine possible. None of this would be possible without all of Ryan’s hard work, and |
would have never learned all of this without his help. Thank you, Ryan!

Terminology

Scene — A collection of objects saved as a .json file using the Grool Editor

State — A set of functions in a script that determines what happens from the start of the state, during the
state, and at the end of the state.

Scenes Overview

Currently our game is broken up into 3 scenes. The Intro scene, the Credits scene, and the Game scene. The
Intro scene is the first scene to be loaded when launching the game. At the end of the intro animation, the
Game scene is loaded. From the pause menu in the Game scene, the Credits scene can be loaded. The Credits
scene then goes back to the Game scene.

l[:ma]j \ [an]j
l (cnenirs) '
Intro Scene

The Intro scene cycles through the logos for DigiPen, FMOD, and team Critical Orbit

Credits Scene
The Credits scene is the credits scene. That’s it.

Game Scene
The Game scene contains the bulk of the actual game. It is broken up into multiple states which can be seen
in the following image. This will be explained in more detail in the following section.

Ghat SCame

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

The Game Scene

A scene is just a collection of objects placed in the editor, and saved to a .json file. The Game scene contains
all of the objects that will be needed to run the various states that make up the main flow of the game.

When the scenes is first loaded, the camera pans down to where the main menu state takes place. We then
switch to the Menu state which awaits input from the user to start the game. When input is detected, we
switch to the PreGame state that plays the animation of the supernova exploding, launching the player star
into position for gameplay. We then switch to the Gameplay state, which is comprised of sub states that
represent different sections of gameplay (like the open and closed sections of Infinite Supernova). When the
gameplay ends, the state switches to the results screen. At this point the user can switch the state back to
the menu, or back to the PreGame state to start the game over again. At any point during these states, the
pause menu can be brought up.

The Current State of the Game Scene

Currently these are the objects that the Game scene contains. The root object of the scene contains a
behavior component that has the file Game.lua attached to it. This file contains the state machine and
essentially runs the entire game state through its Update loop.

File Windows ¥ Properties

¥ Hierarchy

Create Clone

function Init()

function Update(dt)

function SetState(env

function LoadFirstState()

The State Machine Preview

The state machine is nothing more than a simple function, SetState(), that changes a few variables pointing to
which Init, Update, and Shutdown functions to call. This will be explained in more detail in section: The State
Machine.

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Behavior Functions

As a refresher and reminder, these are two of the main functions that you have access to as part of a Lua
script being attached to a behavior component.

1 function Init()

2 -- initialize stuff
3 end

4

5 function Update(dt)

6 -- update stuff

7 end

8

Init()

The init function gets called when the behavior component for an object is first created. This means that
when the Game scene is first loaded from either the Intro scene or the Credits scene, the init function will be
called for all of the objects in the Game scene containing behaviors with Lua scripts attached to them. This
also means that any “scene” that is instanced in during gameplay with InstanceScene() will have the init
function called for any objects containing behavior components from that instanced scene.

Update()

For any behavior component in the scene, the Update() function will be called every frame.

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

GetEnvironment()

This function retrieves the Lua environment from the behavior component at the given ID. This is similar to
getting the Transform component from an object at a given ID.

1 function Init()

2

3 env = GetEnvironment(ID)
4

5 end

6

So what?

This means that you can have the Lua script attached to a certain behavior component in game, access the
variables and functions from a Lua script attached to another behavior component in game.

Remember that the gamescene root object has a behavior component with the Game.lua script
attached to it?

: 1 =[]
14 -- called when the behavior c
15  function Init()
16 firstUpdate = true -- wheth G
17 end
18
19 -- called every frame
20 function Update(dt) <=
31 -- sets the next state to use
from the given environment
33 function SetState(env)
44 -~ necessary so that we are s

45 function LoadFirstState()

Well by getting the ID of the gamescene object, you can then get the lua
environment from that behavior component, which will give you access to the
functions and variables you have created in the lua file script.

1 function Init()

env = GetEnvironment(GetObjectByName("gamescene"))

—

5 end =

7 function Update(dt
Imagine | have 8 . 5

attached this

script to one of

the other objects

in the hierarchy 1

list above. 14 end
1

C

I can call the update function from another file!

e env.Update(dt)

11 I can get/set variables!
12 env.firstUpdate = false

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

The State Machine

The state machine handles switching the state of the Game scene between all of the different states:
PanState, MenuState, PreGameState, GameplayState, and ScoreState.

Game.lua

This script is attached to the “gamescene” root object of the Game scene. It is through this script that most of
the rest of the Game scene is ran. The Update() function in this file is called as being part of a behavior
component. Inside the Update() function, it calls the StateUpdate() function of whatever state is the current

state.

19 -- called every frame

20 function Update(dt)

21

22 -- if this is the first time the update function has been called
23 if (firstUpdate) then

24 LoadFirstState()

25 end

26

27 StateUpdate(dt) --update the current state

28

29 end

30

31 -- sets the next state to use by storing which shutdown and update functions to use
32 -- from the given environment and calling the new environments state init function
33 ‘function SetState(env)

34 -- if there is a current shutdown state

35 if StateShutdown then

36 StateShutdown()

37 end

38

39 StateShutdown = env.StateShutdown
40 StateUpdate = env.StateUpdate

41 env.StateInit()

42  end

If you are new to Lua, it might not be obvious at first glance, but StateShutdown and StateUpdate are global

variables declared in this file. We are using them to store which functions to call.

Basic State Functions
When you create a Lua file that is going to be used as a state that is part of the game scene, it must declare

these three functions:

function StateInit()

end

function StateUpdate(dt)
end

function StateShutdown()

H O® VWO NOUVT S WNR

[

end

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

SetState()

31 -- sets the next state to use by storing which shutdown and update functions to use
32 -- from the given environment and calling the new environments state init function
33 tifunction SetState(env)

34 -- if there is a current shutdown state

35 if StateShutdown then

36 StateShutdown ()

37 end

38

39 StateShutdown = env.StateShutdown

40 StateUpdate = env.StateUpdate

41 env.StateInit()

42 |end

This function is the heart of the state machine. When you call this function, you must pass in the Lua
environment of a behavior that has a Lua script attached to it with the proper State functions declared. If any
of the state functions, Statelnit(), StateUpdate(), and StateShutdown(), are missing, you will certainly get an

error.

The function first checks if the StateShutdown variable has been set and given a shutdown function to call in
another state. If it has, it calls that shutdown function. The shutdown and update function from the passed in
environment are then stored in the variables: StateShutdown and StateUpdate. We don’t need to store the
init function, so we just call it directly from here.

Calling SetState()

We want to be able to call the SetState() function from within our states so that we can tell the state machine
to switch to the next state. To do this we will make use of GetEnviroment(). We will use the Gameplay state
as an example.

39 £--[[

40 The init function that gets called when this state is first switched to.

41 *--]]

42  function StateInit()

43 -- get the game environment so we can change its state later

44 gameEnv = GetEnvironment(GetObjectByName("gamescene"))

45 -- get the next environment so we can switch to its state at the end of this state
46 nextEnv = GetEnvironment(GetObjectByName("score_behavior"))

One of the first things you should do when your state initializes is to store a reference to the environment of
the Game scene root which contains the state machine, and the environment of the next state you want to
switch to after this state. (you don’t HAVE to determine which scene to switch to now, you can do that later.
In this case we know we want to switch to the scoreboard state after the gameplay state).

When its time to switch states, we’ll call SetState() on gameEnv and pass in the environment of the next

state.

64 -- for testing purposes, change to next state when space is pressed
65 if (Input:IsAction3Released()) then

66 gameEnv.SetState(nextEnv)

67 end

For example, here | am switching states when | press the space bar.

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

The Gameplay State

As we have seen, the Gameplay state is one of the states as part of the Game scene. However, we plan on
having different sections of gameplay as part of the Gameplay state. So the Gameplay state itself has been
broken up into separate smaller gameplay states, and thus has its own state machine to handle switching
between these sections.

Game SCeme

L%

[sare - Whe b T - B

~ ~he e camina
Aad it

[ #resw [Pai-samp |
B J A arl L

[ Parie
I_:’rw"

GameplayState.lua
Remember that the Gameplay state is part of the Game state machine. Thus this file has the functions
Statelnit(), StateUpdate(), and StateShutdown(), which will be called by the state machine in Game.lua.

T 5=
2 File: GameplayState.lua
3 Author: Christian Licona
4 Course: GAM250
5 Team: Critical Orbit
6 Project: Fetch Engine
7 Date: ©3/28/20
8
9 Brief: The state that executes and holds gameplay information
10
11 Copyright © 2020 DigiPen - All Rights Reserved
12 (--11
13
14 -- load the gameplay state that we should start in when this game state is first switched to
15  function LoadFirstGameplayState() )
23 -- called when the behavior component is first created
24 function Init()
39 B--[[
40 The init function that gets called when this state is first switched to.
41, ~=-]]
42  function Statelnit()
57 B--[[
58 The update function for this state that gets called every frame from the state machine in the Game behavior.
59 Note: This is NOT the same as the regular Update(dt) function that gets called every frame for the specific
60 behavior component this script is attached to.
61 ~==]]
62  function StateUpdate(dt)
730 H==[]
74 This function will be called from the state machine when SetState is called to switch states.
75 ==—1]
76  function StateShutdown()
87 -- sets the next state to use by storing which shutdown and update functions to use
88 -- from the given environment and calling the new environments state init function
89  function SetGameplayState(env) .
100 -- call the shutdown function for the current gampeplay state and switch to the score state

101  function EndGameplayState()

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Functions
The Gameplay state has one notable function other than SetGameplayState() that may be useful to call from
within a gameplay section.

100 -- call the shutdown function for the current gampeplay state and switch to the score state
101  function EndGameplayState()

102 GameplayStateShutdown()

103 gameEnv.SetState(nextEnv)

104 end

EndGameplayState() will call the shutdown function for the current gameplay section. It will then tell the
Game state machine to move on to whatever state “nextEnv” is.

SetGameplayState()

87 -- sets the next state to use by storing which shutdown and update functions to use
88 -- from the given environment and calling the new environments state init function
89  function SetGameplayState(env)

90 -- if there is a current shutdown state

91 if GameplayStateShutdown then

92 GameplayStateShutdown()

93 end

94

95 GameplayStateShutdown = env.GameplayStateShutdown
96 GameplayStateUpdate = env.GameplayStateUpdate

97 env.GameplayStateInit()

98 end

As you can see, the Gameplay state has a state machine nearly identical to the Game state machine. The only
difference being that the functions it calls are prepended with GameplayState instead of just State. This of
course means that any gameplay states that should be considered a part of the Gameplay state machine
should have these functions:

function GameplayStateInit()
end

function GameplayStateUpdate(dt)

NOwnswN e

end

o

0

function GameplayStateShutdown()

11 end

Calling SetGameplayState()

This process will be similar to calling SetState() for the Game scene.

We'll use GameplayState_Examplel.lua as an example. In this example we will store a reference to the
Gameplay state environment.

19  --[[

20 The init function that gets called when this game play state is first switched to.

21 --11

22 function GameplayStateInit()

23

24 -- get the gameplay state environment managing this state so we can change its state later
25 gameplayEnv = GetEnvironment(GetObjectByName("gameplay_ behavior"))

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Then, when its time to switch to another gameplay section, we’ll tell the Gameplay state to switch to the
section we want.

38 -- if 10 seconds have passed, switch back to example2 gameplay

39 if timer >= 5 then

40 local env = GetEnvironment(GetObjectByName("gameplay example2_ behavior"))
41 gameplayEnv.SetGameplayState(env)

42 end

Or maybe we want to end the Gameplay state instead.

15 if OverlappingPlayer() then

16 -- get the gameplay state

17 local env = GetEnvironment(GetObjectByName("gameplay behavior"))
18 env.EndGameplayState() -- end the gameplay state and show score
19 end

This is a snippet from ExamplelEnemy.lua. When the enemy overlaps the player, it tells the Gameplay state
to end. The Gameplay state is handling which Game state it will switch to, which in our case is the
Scoreboard. (however you could make the Game state switch to whatever state you wanted yourself. Do that
at your own risk though)

GameplayState STATENAME.|ua

If you want to create a new gameplay section for the Gameplay state, you will need to follow these steps:

1. Make a copy of the GameplayState_ TEMPLATE.lua file. Rename it to whatever your sections is called.

2. Create a new object in the Game scene with a behavior component. Please parent it to the
gameplaystate_behaviors object for organization purposes.

3. Attach your state script to the object.

function Init()
function GameplayStateInit()
function GameplayStatelpdate(dt)

Function GameplayStateShutdown()
function SpawnEnemy(}

GameplayState. TEMPLATE.lua

This file already contains the state functions it should contain, as well as a premade header. The init function
also already stores a reference to the Gameplay states environment so you can tell the gameplay state to
switch sections from your section.

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

TLDR

Game Scenes Diagram

jﬂfww)’ \ (eame) |
l (ceearrs) '

Game Scene Diagram

This is a view of the game scene with object names and the lua files that represent the states for each of

those objects.
,' Eamescens
, Gamelua f
i Go To meny
.I | PLar nemas 7
v 3 !

&

B - |
ST AT | pan_behavior = | menu_behavior :J pregame_behavior — gameplay_behawior _9 |
e Panstate.lua [ Menustate lua PreGameState lua = GameplayState lua =3
= L \[_ 1
| !
(a-:!msmt ;, gameplay_open_behaviar | &—— | gameplay_closed_behavior
A EHIVE L GameplayState_Open lua = GameplayState_Closed.lua

Game Scene

score_behavior
ScoreState. |ua |

Game State Diagram

Go TO men)

Game Scene
Piay Aemin/ /
S —
A U ]
L) | |
= O =) C%-t =3‘/ e o P a f:ur;a.u] @
Prass Oytrom : — [
Q [ovene erare) Lzwting yrate ) L ThYe
[ Mgy J [n,,' g_.m-ﬁ]
|r. A L;wum LTATE (Enmamsy ;nu—] L’;:J;‘LT:
-_'.th{-J = War oo TPT = SN Eveiie
. =P mes CAvEAR
= Pam 1o LY
Surgamp/n
|y Paess STmar fE35C
vV
Pavs &
[ Paase
L:‘rms
|

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Behavior Functions

=

function Init()
-- initialize stuff
end

function Update(dt)
-- update stuff
end

coONOUVT A WN

GetEnvironment()

39 G--[[

1 Ffunction Init() 40 . The init function that gets called when this state is first switched to.

2 41 --

3 shy = GetEnvir‘onment(ID) jj furfftZ:r: ?ﬁ:tgirnnztér)wironment so we can change its state later

a 44 gameEnv = GetEnvironment(GetObjectByName("gamescene"))

5 end 45 get the next environment so we can switch to its state at the end of this state
6 46 nextEnv = GetEnvironment(GetObjectByName("score_behavior"))

19 --[L

20 The init function that gets called when this game play state is first switched to.

21 --1]

22 “function GameplayStateInit()

23

24 -- get the gameplay state environment managing this state so we can change its state later
25 gameplayEnv = GetEnvironment(GetObjectByName("gameplay behavior"))

State Functions / Gameplay State Functions

1 function StateInit() 1 function GameplayStateInit()

2 2

3 end 3 end

4 4

5 function StateUpdate(dt) 5 function GameplayStateUpdate(dt)
6 6

7 end 7 end

8 8

9 function StateShutdown() 9 function GameplayStateShutdown()
10 10

11 end 11 end

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED



	Acknowledgments
	Terminology
	Scenes Overview
	Intro Scene
	Credits Scene
	Game Scene

	The Game Scene
	The Current State of the Game Scene
	The State Machine Preview

	Behavior Functions
	Init()
	Update()

	GetEnvironment()
	So what?

	The State Machine
	Game.lua
	Basic State Functions
	SetState()
	Calling SetState()

	The Gameplay State
	GameplayState.lua
	Functions
	SetGameplayState()
	Calling SetGameplayState()

	GameplayState_STATENAME.lua
	GameplayState_TEMPLATE.lua

	TLDR

