

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

Table of Contents
Acknowledgments ... 2

Terminology .. 2

Scenes Overview ... 2

Intro Scene .. 2

Credits Scene... 2

Game Scene .. 2

The Game Scene.. 3

The Current State of the Game Scene .. 3

The State Machine Preview ... 3

Behavior Functions .. 4

Init() .. 4

Update() .. 4

GetEnvironment() ... 5

So what? ... 5

The State Machine .. 6

Game.lua ... 6

Basic State Functions ... 6

SetState() .. 7

Calling SetState() ... 7

The Gameplay State .. 8

GameplayState.lua .. 8

Functions .. 9

SetGameplayState() ... 9

Calling SetGameplayState() ... 9

GameplayState_STATENAME.lua ... 10

GameplayState_TEMPLATE.lua .. 10

TLDR ... 11

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

Acknowledgments
Big shout out to Ryan Heath for researching and implementing all of the awesome tech that makes all of this

Lua integration into our engine possible. None of this would be possible without all of Ryan’s hard work, and I

would have never learned all of this without his help. Thank you, Ryan!

Terminology
Scene – A collection of objects saved as a .json file using the Grool Editor

State – A set of functions in a script that determines what happens from the start of the state, during the

state, and at the end of the state.

Scenes Overview
Currently our game is broken up into 3 scenes. The Intro scene, the Credits scene, and the Game scene. The

Intro scene is the first scene to be loaded when launching the game. At the end of the intro animation, the

Game scene is loaded. From the pause menu in the Game scene, the Credits scene can be loaded. The Credits

scene then goes back to the Game scene.

Intro Scene
The Intro scene cycles through the logos for DigiPen, FMOD, and team Critical Orbit

Credits Scene
The Credits scene is the credits scene. That’s it.

Game Scene
The Game scene contains the bulk of the actual game. It is broken up into multiple states which can be seen

in the following image. This will be explained in more detail in the following section.

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

The Game Scene
A scene is just a collection of objects placed in the editor, and saved to a .json file. The Game scene contains

all of the objects that will be needed to run the various states that make up the main flow of the game.

When the scenes is first loaded, the camera pans down to where the main menu state takes place. We then

switch to the Menu state which awaits input from the user to start the game. When input is detected, we

switch to the PreGame state that plays the animation of the supernova exploding, launching the player star

into position for gameplay. We then switch to the Gameplay state, which is comprised of sub states that

represent different sections of gameplay (like the open and closed sections of Infinite Supernova). When the

gameplay ends, the state switches to the results screen. At this point the user can switch the state back to

the menu, or back to the PreGame state to start the game over again. At any point during these states, the

pause menu can be brought up.

The Current State of the Game Scene
Currently these are the objects that the Game scene contains. The root object of the scene contains a

behavior component that has the file Game.lua attached to it. This file contains the state machine and

essentially runs the entire game state through its Update loop.

The State Machine Preview
The state machine is nothing more than a simple function, SetState(), that changes a few variables pointing to

which Init, Update, and Shutdown functions to call. This will be explained in more detail in section: The State

Machine.

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

Behavior Functions
As a refresher and reminder, these are two of the main functions that you have access to as part of a Lua

script being attached to a behavior component.

Init()
The init function gets called when the behavior component for an object is first created. This means that

when the Game scene is first loaded from either the Intro scene or the Credits scene, the init function will be

called for all of the objects in the Game scene containing behaviors with Lua scripts attached to them. This

also means that any “scene” that is instanced in during gameplay with InstanceScene() will have the init

function called for any objects containing behavior components from that instanced scene.

Update()
For any behavior component in the scene, the Update() function will be called every frame.

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

GetEnvironment()
This function retrieves the Lua environment from the behavior component at the given ID. This is similar to

getting the Transform component from an object at a given ID.

So what?
This means that you can have the Lua script attached to a certain behavior component in game, access the

variables and functions from a Lua script attached to another behavior component in game.

Remember that the gamescene root object has a behavior component with the Game.lua script

attached to it?

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

The State Machine
The state machine handles switching the state of the Game scene between all of the different states:

PanState, MenuState, PreGameState, GameplayState, and ScoreState.

Game.lua
This script is attached to the “gamescene” root object of the Game scene. It is through this script that most of

the rest of the Game scene is ran. The Update() function in this file is called as being part of a behavior

component. Inside the Update() function, it calls the StateUpdate() function of whatever state is the current

state.

If you are new to Lua, it might not be obvious at first glance, but StateShutdown and StateUpdate are global

variables declared in this file. We are using them to store which functions to call.

Basic State Functions
When you create a Lua file that is going to be used as a state that is part of the game scene, it must declare

these three functions:

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

SetState()

This function is the heart of the state machine. When you call this function, you must pass in the Lua

environment of a behavior that has a Lua script attached to it with the proper State functions declared. If any

of the state functions, StateInit(), StateUpdate(), and StateShutdown(), are missing, you will certainly get an

error.

The function first checks if the StateShutdown variable has been set and given a shutdown function to call in

another state. If it has, it calls that shutdown function. The shutdown and update function from the passed in

environment are then stored in the variables: StateShutdown and StateUpdate. We don’t need to store the
init function, so we just call it directly from here.

Calling SetState()
We want to be able to call the SetState() function from within our states so that we can tell the state machine

to switch to the next state. To do this we will make use of GetEnviroment(). We will use the Gameplay state

as an example.

One of the first things you should do when your state initializes is to store a reference to the environment of

the Game scene root which contains the state machine, and the environment of the next state you want to

switch to after this state. (you don’t HAVE to determine which scene to switch to now, you can do that later.

In this case we know we want to switch to the scoreboard state after the gameplay state).

When its time to switch states, we’ll call SetState() on gameEnv and pass in the environment of the next
state.

For example, here I am switching states when I press the space bar.

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

The Gameplay State
As we have seen, the Gameplay state is one of the states as part of the Game scene. However, we plan on

having different sections of gameplay as part of the Gameplay state. So the Gameplay state itself has been

broken up into separate smaller gameplay states, and thus has its own state machine to handle switching

between these sections.

GameplayState.lua
Remember that the Gameplay state is part of the Game state machine. Thus this file has the functions

StateInit(), StateUpdate(), and StateShutdown(), which will be called by the state machine in Game.lua.

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

Functions
The Gameplay state has one notable function other than SetGameplayState() that may be useful to call from

within a gameplay section.

EndGameplayState() will call the shutdown function for the current gameplay section. It will then tell the

Game state machine to move on to whatever state “nextEnv” is.

SetGameplayState()

As you can see, the Gameplay state has a state machine nearly identical to the Game state machine. The only

difference being that the functions it calls are prepended with GameplayState instead of just State. This of

course means that any gameplay states that should be considered a part of the Gameplay state machine

should have these functions:

Calling SetGameplayState()
This process will be similar to calling SetState() for the Game scene.

We’ll use GameplayState_Example1.lua as an example. In this example we will store a reference to the

Gameplay state environment.

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

Then, when its time to switch to another gameplay section, we’ll tell the Gameplay state to switch to the
section we want.

Or maybe we want to end the Gameplay state instead.

This is a snippet from Example1Enemy.lua. When the enemy overlaps the player, it tells the Gameplay state

to end. The Gameplay state is handling which Game state it will switch to, which in our case is the

Scoreboard. (however you could make the Game state switch to whatever state you wanted yourself. Do that

at your own risk though)

GameplayState_STATENAME.lua
If you want to create a new gameplay section for the Gameplay state, you will need to follow these steps:

1. Make a copy of the GameplayState_TEMPLATE.lua file. Rename it to whatever your sections is called.

2. Create a new object in the Game scene with a behavior component. Please parent it to the

gameplaystate_behaviors object for organization purposes.

3. Attach your state script to the object.

GameplayState_TEMPLATE.lua
This file already contains the state functions it should contain, as well as a premade header. The init function

also already stores a reference to the Gameplay states environment so you can tell the gameplay state to

switch sections from your section.

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

TLDR
Game Scenes Diagram

Game Scene Diagram

This is a view of the game scene with object names and the lua files that represent the states for each of

those objects.

Game State Diagram

INFINITE SUPERNOVA GAME SCENE DOCUMENTATION

Christian Licona, Critical Orbit | COPYRIGHT © 2020 DIGIPEN - ALL RIGHTS RESERVED

Behavior Functions

GetEnvironment()

State Functions / Gameplay State Functions

	Acknowledgments
	Terminology
	Scenes Overview
	Intro Scene
	Credits Scene
	Game Scene

	The Game Scene
	The Current State of the Game Scene
	The State Machine Preview

	Behavior Functions
	Init()
	Update()

	GetEnvironment()
	So what?

	The State Machine
	Game.lua
	Basic State Functions
	SetState()
	Calling SetState()

	The Gameplay State
	GameplayState.lua
	Functions
	SetGameplayState()
	Calling SetGameplayState()

	GameplayState_STATENAME.lua
	GameplayState_TEMPLATE.lua

	TLDR

